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LETTER TO THE EDITOR 

Region of validity in theories of diffusion near to the 
percolation threshold 

J KertCszt and J Metzger 
Physik-Department der Technischen Universitat Munchen, D-8046 Garching, FRG 

Received 7 March 1984 

Abstract. In theories of classical diffusion near to the percolation threshold two characteris- 
tic times can be defined: is for the short time and T~ for the hydrodynamic behaviour. 
Physically T ~ <  T~ should be fulfilled and we suggest this relation as a criterion of validity 
in such theories. For the effective medium and the self-consistent current relaxation theory 
the region where this criterion is violated shrinks with dimension d +CO, but remains finite 
for all d > 2. d = 2 is a marginal case concerning our criterion. 

The importance and the theoretical challenge of classical diffusion in disordered media 
have caused intense research during recent years. The conductor-insulator transition 
in such systems is closely related to percolation (see e.g. Stauffer 1979). Models 
describing the essence of this phenomenon can be either of hopping character (see 
e.g. Mitescu and Roussenq 1983), or continuous Lorentz models, where the static 
disorder serves as scattering potential (see e.g. Gotze 1982). Considerable effort has 
been made to construct approximation theories for these models. Successful attempts 
are the effective medium theory (EMT) (Bruggeman 1935) for hopping models (Kirk- 
patrick 1971, Odagaki and Lax 1981, Summerfield 1981, Webman 1981, Kaski et a1 
1982), and the self-consistent current relaxation theory (SCCRT) (Gotze 1978) for the 
hard sphere Lorentz model (Gotze et a1 1981a). These theories are exact in the weak 
disorder limit, they give a description of the conductor-insulator transition and some 
quantities of interest can be calculated with high accuracy in a large range of the 
disorder parameter (see Kirkpatrick 1971, Gotze et a1 1981b, 1982). A question of 
fundamental importance is to clarify the region of validity in these theories, as is done 
by the Ginzburg criterion in the mean field theory of phase transitions. 

In this letter we point out the main physical reasons for the breakdown of the 
theories near the percolation threshold cp and we suggest a criterion to estimate the 
region of validity. 

The system under consideration consists of allowed and forbidden regions with c 
being the concentration of e.g. broken links. (In continuum systems the dimensionless 
scatterer density plays the role of the concentration c. Universality between continuum 
and lattice systems seems to hold (see e.g. Kertisz and Vicsek 1982).) The correlation 
length 5, diverging as with E = cp - c, is characteristic in both finite and infinite 
clusters for E > O .  The characteristic finite clusters with radius -5 give the main 
contribution to the diverging moments of the cluster distribution (Stauffer 1979). The 
infinite cluster is homogeneous on length scales much larger than 6, while it is self 

t Present and permanent address: Research Institute for Technical Physics, HAS, Budapest, H- 1325, Hungary. 
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similar on much shorter length scales (Stanley and Coniglio 1983). This structure is 
reflected in the diffusion of a particle on percolation clusters. According to the scaling 
form (Straley 1980, Ben Avraham and Havlin 1982, Gefen et a1 1983) of the mean 
square displacement 

( r2( 1)) a ~-’”+~f( t /  T )  (1) 

at time t for E+0, where T a l E I - 2 u + p - @  is the characteristic time and p and /3 are the 
critical exponents of the diffusion coefficient D a  E @  and of the percolation probability. 
For times tc< T the critical behaviour can be observed, which is anomalous diffusion 
like at the threshold (Ben Avraham and Havlin 1982, Gefen er al 1983). For t >> T the 
long time asymptotics sets in (Gotze 1982, KertCsz and Metzger 1983) 

(r2(t))/(2d)= Dt + r i + l ( t ) ,  t+co (2) 

l(t) being determined by the long time behaviour of K(t), the time dependent diffusion 
coefficient and for E -f 0, r i a  E - ~ ” + ~ .  T of equation (1) can be calculated as T -  r i /  D. 
This is the time needed for the particle either to notice the boundaries of a typical 
finite cluster or to cross a self similar blob (Stanley and Coniglio 1983) in the infinite 
cluster. In equation (2) the term r i  expresses the fact that the particle ‘remembers’ 
even for t + 00 the typical finite clusters and the structure of the infinite cluster (KertCsz 
and Metzger 1983), i.e. features carrying criticality at cp. Taking r i  and D from an 
approximation theory, we can define 

T~ = r;/ D (3) 

as the time characteristic for the short time behaviour. 

established in the case of classical liquids (Forster et al 1977), we assume 
I(  t )  is a typical hydrodynamic term. Accepting universality arguments, as they are 

(4) 

where the exponent is taken from the low density limit of the Lorentz model (Ernst 
and Weyland 1971)t. EMT and SCCRT also predict this behaviour for all E > 0. A 
quantity with dimension of time is, therefore, ( u / D ) ” ~ .  Because of equations (1) and 
(2) this should yield 7 again, as far as order of magnitude and divergence properties 
are concerned. For t >> T one should see the long time asymptotics. According to van 
Beijeren’s (1982) convincing argument, the long time tail of K ( t )  in the low density 
limit of the Lorentz model is due to missing randomisation of velocities when the 
particle comes back to the region where it has started from. Physically the long time 
tails are always due to memory effects and the time scale where they become.observable 
corresponds to the returning time. If a and D are now taken from an approximation 
theory, one can define 

l ( t )  = - a t - ( d / 2 - ’ )  

as a characteristic time for the hydrodynamic limit. We argue that in the theories the 
short and long time scales should be separated, i.e. 

Ts < Th (6 )  

t In numerical simulations (Alder and Alley 1978) a density dependent exponent was found. This could be 
explained because in runs with fixed I only effective exponents can be seen (Gotze er al 1981b, 1982). 
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and we propose this relation as a criterion for the region of validity in approximation 
theories. 

The reason for the breakdown of EMT and SCCRT is similar to that of mean field 
theories in thermal phase transitions: fluctuations are neglected. Both EMT and SCCRT do 
not contain the non-ergodic singularity due to finite clusters in the conducting phase 
(Kert6sz and Metzger 1983). The complicated structure presented at the beginning is 
approximated in these theories in an overall (effective) medium. Near to cp fluctuations 
become important, which have geometrical origin here, and which manifest in the fact 
that the infinite cluster has a structure (Stanley and Coniglio 1983) and finite clusters 
are present in the conducting phase. 

In order to illustrate how criterion (6) works, we calculate T~ and Th for hypercubic 
bond percolation in EMT, and for the d-dimensional Lorentz model in the SCCRT 
framework. First we note that the low frequency behaviour of K ( z ) ,  the Laplace 
transform of K ( t ) ,  is the same in both theories. For EMT it can be read off from Sahimi 
et a1 (1983) and Haus er a1 (1983). For SCCRT, where it suffices for our purposes to 
use a simplified version, it can be read off from Leutheusser (1982). One obtains 

) K ( z ) /  Do= i(1- c/cp) +c/cp Bz/D -iA dk kd+'(z/ iD + k2)-' ( loqo 
where in the last integral only the leading (cut-off independent) non-analyticity is to 
be taken. c is the density of scatterers with radius unity in the Lorentz model. 
cp = 1 - l / d  in EMT and cp = d /  V, in SCCRT, where v d  is the volume of the d- 
dimensional unit sphere. Do denotes the diffusion constant of the pure system or the 
Boltzmann approximation in EMT and SCCRT respectively. The dimension dependent 
numerical factors A and B are for d >3:  A =  Vd[(l - l / d ) ( 2 ~ ) ~ ] - ' ,  B =  
(2d -2)-' j: dt(e-'Zo(r))d in EMT, where lo(?) denotes the modified Bessel function of 
order 0, and A = d(2dr2(d/2 + l))-', B = [(d +2) (d/2-  1)]-' in SCCRT. 

After inverting the Laplace transform, we can identify the quantities needed in our 
criterion as r i =  DocB/(cpD) and a = DocAT(d/2- 1 ) / ( 2 ~ , D ~ / ~ ) .  Via equations (3), (9, 
(6) we get the estimate D21d 6 D. This relation is violated near to cp for all d > 2. 
There is no dimension above which the critical behaviour could be described by these 
theories. In fact, it is widely accepted (de Gennes 1976, Stauffer 1979) that for 
d 2 d, = 6, p = 3, while D goes linearly to 0 in all d in these theories. On the other 
hand the criterion (6) can be written as 

c s  cp(l +x(d))-' (7) 

where x(d) = (4Bd/[A2r2(d/2- 1 ) ] } ' ' ( d - 2 ) .  From this formula one easily deduces that 
x(d + 00) vanishes in both theories. Therefore one can say that the higher the dimension 
is, the larger is the range of c for which these theories should be valid, but the deviations 
from experiment should show up more promptly in higher dimensions, if c violates 
equation (7). We mention that in d = 3 equation (7) yields c d cp 0.20 in EMT and 
c c cp 0.35 in SCCRT. In the first case a factor of three (Kirkpatrick 1971) and in the 
second case a factor of two (Gotze et a1 1981b) could be allowed. Here we have to 
emphasise that such a criterion can be taken only as an order of magnitude estimate. 

The case d = 2 requires a separate discussion. Equations (l), (2) and (4) yield 

t ( r i ( t ) ) =  D t + r i + a  ln(r/T) (8) 

for t + 00. The same long time behaviour 'is predicted in both theories with r i  and 
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a0cE-I (Sahimi et a1 1983, Haus et a1 1983, Gotze et a1 1981). This parallel scaling 
fulfils equation (l), and from that viewpoint, which is a basis of our criterion, these 
theories are consistent. This could mean that d = 2 is the lower critical dimension 
and p = 1 with logarithmic corrections (de Gennes 1976). However, in the light of 
recent numerical results, p settles at 1.3 (Binder and Stauffer 1983, Pandey et a1 1983). 
Discrepancies also show up in ri ,  which is known to diverge as E-*.” (see e.g. Stauffer 
1979). This means that the separation of time scales is theoretically held valid with 
wrong exponents. But the fact that the theories show excellent agreement with the 
numerical data concerning D(c) in two dimensions (Kirkpatrick 1971, Gotze et a1 
1982) underlines the importance of our aspect. Because equation (8) should be 
generally valid, we suggest to reanalyse some hopping simulations (Mitescu and 
Roussenq 1983, Pandey et a1 1983) with taking into account that the linearity in ( r ’ ( t ) )  
is only logarithmically approached and not exponentially fast, as assumed in Straley 
(1980), Mitescu and Roussenq (1983) and Pandey et a1 (1983). 

In conclusion, we have given a simple criterion for the region of validity in 
approximation theories describing diffusion near to the percolation threshold. It has 
been successfully applied to EMT and SCCRT, thereby emphasising that these theories, 
although different in origin, describe the critical region in the same manner. Finally 
we mention that any approximation theory for the models treated here could be tested 
by our criterion equations (2H6). 

We are indebted to Professor W Gotze for calling our attention to the problem and 
for many discussions. One of us (JK) wishes to thank him and the TUM for kind 
hospitality. Thanks are due to Professor D Stauffer for preprints and to Dr H Iro for 
a discussion. This work was supported in part by the Deutsche Forschungsgemeinschaft. 
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